Package: ProtE 1.0.3

ProtE: Processing Proteomics Data, Statistical Analysis and Visualization

The 'Proteomics Eye' ('ProtE') offers a comprehensive and intuitive framework for the univariate analysis of label-free proteomics data. By integrating essential data wrangling and processing steps into a single function, 'ProtE' streamlines pairwise statistical comparisons for categorical variables. It provides quality checks and generates publication-ready visualizations, enabling efficient and robust data analysis. 'ProtE' is compatible with proteomics data outputs from 'MaxQuant' (Cox & Mann, (2008) <doi:10.1038/nbt.1511>), 'DIA-NN' (Demichev et al., (2020) <doi:10.1038/s41592-019-0638-x>), and 'Proteome Discoverer' (Thermo Fisher Scientific, version 2.5). The package leverages 'ggplot2' for visualization (Wickham, (2016) <doi:10.1007/978-3-319-24277-4>) and 'limma' for statistical analysis (Ritchie et al., (2015) <doi:10.1093/nar/gkv007>).

Authors:Theodoros Margelos [aut, cre, cph], Rafael Stroggilos [ctb, cph]

ProtE_1.0.3.tar.gz
ProtE_1.0.3.zip(r-4.5)ProtE_1.0.3.zip(r-4.4)ProtE_1.0.3.zip(r-4.3)
ProtE_1.0.3.tgz(r-4.5-any)ProtE_1.0.3.tgz(r-4.4-any)
ProtE_1.0.3.tar.gz(r-4.5-noble)ProtE_1.0.3.tar.gz(r-4.4-noble)
ProtE_1.0.3.tgz(r-4.4-emscripten)ProtE_1.0.3.tgz(r-4.3-emscripten)
ProtE.pdf |ProtE.html
ProtE/json (API)
NEWS

# Install 'ProtE' in R:
install.packages('ProtE', repos = c('https://theomargel.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/theomargel/prote/issues

On CRAN:

Conda:

6.33 score 2 scripts 12k downloads 4 exports 212 dependencies

Last updated 3 days agofrom:e8e51e5bde. Checks:7 OK, 1 FAILURE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 06 2025
R-4.5-winOKMar 06 2025
R-4.5-macOKMar 06 2025
R-4.5-linuxOKMar 06 2025
R-4.4-winOKMar 06 2025
R-4.4-macOKMar 06 2025
R-4.4-linuxOKMar 06 2025
R-4.3-winOUTDATEDMar 05 2025

Exports:diannomaximum_quantumpd_multipd_single

Dependencies:abindade4airralakazamapeaskpassbackportsbase64encBHBiobaseBiocGenericsBiocParallelBiostringsbitbit64bitopsblobbootbroombslibcachemcallrcarcarDatacellrangerclassclicliprclustercodetoolscolorspaceconflictedcorrplotcowplotcpp11crayoncrosstalkcurldata.tabledata.treeDBIdbplyrDelayedArrayDEoptimRDerivdigestdoBydplyrdtplyre1071evaluatefansifarverfastmapFNNfontawesomeforcatsformatRFormulafsfutile.loggerfutile.optionsgarglegenericsGenomeInfoDbGenomeInfoDbDataGenomicAlignmentsGenomicRangesggplot2ggpubrggrepelggsciggsignifgluegoogledrivegooglesheets4gprofiler2gridExtragtablehavenhighrhmshtmltoolshtmlwidgetshttridsigraphIRangesisobandjquerylibjsonliteknitrlabelinglaekenlambda.rlaterlatticelazyevallifecyclelimmalme4lmtestlubridatemagickmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmemoisemgcvmicrobenchmarkmimeminqamissRangermodelrmunsellnetworkD3nlmenloptrnnetnumDerivopensslopenxlsxpbkrtestpermutepheatmappillarpixmappkgconfigplotlyplyrpolynomprettyunitsprocessxprogresspromisesproxypspurrrqdapRegexquantregR6raggrangerrappdirsrbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRCurlRdpackreadrreadxlreformulasrematchrematch2reprexreshape2RhtslibrlangrmarkdownrobustbaseRsamtoolsrstatixrstudioapirvestS4ArraysS4VectorssassscalessegmentedselectrseqinrsnowspSparseArraySparseMstatmodstringistringrSummarizedExperimentsurvivalsyssystemfontstextshapingtibbletidyrtidyselecttidyversetimechangetinytextzdbUCSC.utilsUniprotRutf8uuidvcdvctrsveganVIMviridisLitevroomwithrxfunxml2XVectoryamlzipzoo

Introduction to ProtE

Rendered frominformations.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2025-02-17
Started: 2024-11-15

ProtE Workflow

Rendered fromWorkflow.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2025-02-17
Started: 2024-11-21