Package: ProtE 1.0.3
ProtE: Processing Proteomics Data, Statistical Analysis and Visualization
The 'Proteomics Eye' ('ProtE') offers a comprehensive and intuitive framework for the univariate analysis of label-free proteomics data. By integrating essential data wrangling and processing steps into a single function, 'ProtE' streamlines pairwise statistical comparisons for categorical variables. It provides quality checks and generates publication-ready visualizations, enabling efficient and robust data analysis. 'ProtE' is compatible with proteomics data outputs from 'MaxQuant' (Cox & Mann, (2008) <doi:10.1038/nbt.1511>), 'DIA-NN' (Demichev et al., (2020) <doi:10.1038/s41592-019-0638-x>), and 'Proteome Discoverer' (Thermo Fisher Scientific, version 2.5). The package leverages 'ggplot2' for visualization (Wickham, (2016) <doi:10.1007/978-3-319-24277-4>) and 'limma' for statistical analysis (Ritchie et al., (2015) <doi:10.1093/nar/gkv007>).
Authors:
ProtE_1.0.3.tar.gz
ProtE_1.0.3.zip(r-4.5)ProtE_1.0.3.zip(r-4.4)ProtE_1.0.3.zip(r-4.3)
ProtE_1.0.3.tgz(r-4.5-any)ProtE_1.0.3.tgz(r-4.4-any)
ProtE_1.0.3.tar.gz(r-4.5-noble)ProtE_1.0.3.tar.gz(r-4.4-noble)
ProtE_1.0.3.tgz(r-4.4-emscripten)ProtE_1.0.3.tgz(r-4.3-emscripten)
ProtE.pdf |ProtE.html✨
ProtE/json (API)
NEWS
# Install 'ProtE' in R: |
install.packages('ProtE', repos = c('https://theomargel.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/theomargel/prote/issues
Last updated 3 days agofrom:e8e51e5bde. Checks:7 OK, 1 FAILURE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 06 2025 |
R-4.5-win | OK | Mar 06 2025 |
R-4.5-mac | OK | Mar 06 2025 |
R-4.5-linux | OK | Mar 06 2025 |
R-4.4-win | OK | Mar 06 2025 |
R-4.4-mac | OK | Mar 06 2025 |
R-4.4-linux | OK | Mar 06 2025 |
R-4.3-win | OUTDATED | Mar 05 2025 |
Exports:diannomaximum_quantumpd_multipd_single
Dependencies:abindade4airralakazamapeaskpassbackportsbase64encBHBiobaseBiocGenericsBiocParallelBiostringsbitbit64bitopsblobbootbroombslibcachemcallrcarcarDatacellrangerclassclicliprclustercodetoolscolorspaceconflictedcorrplotcowplotcpp11crayoncrosstalkcurldata.tabledata.treeDBIdbplyrDelayedArrayDEoptimRDerivdigestdoBydplyrdtplyre1071evaluatefansifarverfastmapFNNfontawesomeforcatsformatRFormulafsfutile.loggerfutile.optionsgarglegenericsGenomeInfoDbGenomeInfoDbDataGenomicAlignmentsGenomicRangesggplot2ggpubrggrepelggsciggsignifgluegoogledrivegooglesheets4gprofiler2gridExtragtablehavenhighrhmshtmltoolshtmlwidgetshttridsigraphIRangesisobandjquerylibjsonliteknitrlabelinglaekenlambda.rlaterlatticelazyevallifecyclelimmalme4lmtestlubridatemagickmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmemoisemgcvmicrobenchmarkmimeminqamissRangermodelrmunsellnetworkD3nlmenloptrnnetnumDerivopensslopenxlsxpbkrtestpermutepheatmappillarpixmappkgconfigplotlyplyrpolynomprettyunitsprocessxprogresspromisesproxypspurrrqdapRegexquantregR6raggrangerrappdirsrbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRCurlRdpackreadrreadxlreformulasrematchrematch2reprexreshape2RhtslibrlangrmarkdownrobustbaseRsamtoolsrstatixrstudioapirvestS4ArraysS4VectorssassscalessegmentedselectrseqinrsnowspSparseArraySparseMstatmodstringistringrSummarizedExperimentsurvivalsyssystemfontstextshapingtibbletidyrtidyselecttidyversetimechangetinytextzdbUCSC.utilsUniprotRutf8uuidvcdvctrsveganVIMviridisLitevroomwithrxfunxml2XVectoryamlzipzoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
DIA NN proteomics data analysis | dianno |
MaxQuant proteomics data analysis | maximum_quantum |
Proteome Discoverer (PD) multiple-files' proteomic analysis | pd_multi |
Proteome Discoverer proteomic data analysis | pd_single |